non-linear dynamic analysis of steel hollow i-core sandwich panel under air blast loading
Authors
abstract
in this paper, the non-linear dynamic response of novel steel sandwich panel with hollow i-core subjected to blast loading was studied. special emphasis is placed on the evaluation of midpoint displacements and energy dissipation of the models. several parameters such as boundary conditions, strain rate, mesh dependency and asymmetrical loading are considered in this study. the material and geometric non-linearities are also considered in the numerical simulation. the results obtained are compared with available experimental data to verify the developed fe model. modeling techniques are described in detail. according to the results, sandwich panels with hollow i-core allowed more plastic deformation and energy dissipation and less midpoint displacement than conventional i-core sandwich panels and also equivalent solid plate with the same weight and material.
similar resources
Non-linear Dynamic Analysis of Steel Hollow I-core Sandwich Panel under Air Blast Loading
In this paper, the non-linear dynamic response of novel steel sandwich panel with hollow I-core subjected to blast loading was studied. Special emphasis is placed on the evaluation of midpoint displacements and energy dissipation of the models. Several parameters such as boundary conditions, strain rate, mesh dependency and asymmetrical loading are considered in this study. The material and geo...
full textNon-linear Response and Dynamic Buckling Analysis of a Cylindrical Sandwich Panel with a Flexible Core under Blast Loading
In this paper, three-dimensional displacement response of a cylindrical sandwich panel with compressible core under the action of dynamic pulse loading is addressed using the extended high order sandwich panel theory. Also, local dynamic pulse buckling of facesheets is studied by considering the Budiansky-Roth buckling criterion. It is assumed that the sandwich panels consist of orthotropic fac...
full textInfluence of Sudden Column Loss on Dynamic Response of Steel Moment Frames under Blast Loading
Modeling buildings response to blast and subsequent progressive collapse interested more and more researchers during the past two decades. Due to the threat from extreme loading, efforts have been made to develop methods of structural analysis and design. In this paper, progressive collapse capacity of steel moment frames was first investigated using alternate load path method, then a nonlinear...
full textDynamic Analysis of Multihazard-Resistant Bridge Piers Having Concrete-Filled Steel Tube under Blast Loading
Research was conducted to analytically investigate the blast-response and behavior of multihazard-resistant bridge piers having circular-shaped, concrete-filled steel tube (CFST) columns. Two different analysis methods, namely a single-degree-of-freedom (SDOF) dynamic analysis and a fiber-based dynamic analysis, were used for this purpose and calibrated with the maximum residual deformations ob...
full textCollapse mechanism maps for the hollow pyramidal core of a sandwich panel under transverse shear
The finite element method has been used to develop collapse mechanism maps for the shear response of sandwich panels with a stainless steel core comprising hollow struts. The core topology comprises either vertical tubes or inclined tubes in a pyramidal arrangement. The dependence of the elastic and plastic buckling modes upon core geometry is determined, and optimal geometric designs are obtai...
full textDynamic Response and Optimal Design of Curved Metallic Sandwich Panels under Blast Loading
It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated usin...
full textMy Resources
Save resource for easier access later
Journal title:
civil engineering infrastructures journalجلد ۴۸، شماره ۲، صفحات ۳۲۳-۳۴۴
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023